Critical exponents and corrections to scaling for bond trees in two dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 224419
(http://iopscience.iop.org/0305-4470/22/20/018)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 13:42

Please note that terms and conditions apply.

Critical exponents and corrections to scaling for bond trees in two dimensions

T Ishinabe
Faculty of Engineering, Yamagata University, Yonezawa 992, Japan

Received 9 March 1989, in final form 26 May 1989

Abstract

We have analysed the newly obtained series of the radius of gyration R_{n} and the number of clusters N_{n} for n-bond trees (i.e. branch polymers without loops) on the square ($n \leqslant 14$) and triangular ($n \leqslant 11$) lattices to estimate the critical parameters. Respective estimates of the exponents ν and θ for R_{n} and N_{n} are consistent with the corresponding values for lattice animals, while the correction-to-scaling exponent Δ_{1} is inconsistent with the animal value. In addition, Δ_{1} has different values for $R_{n}\left(\Delta_{1}=0.635\right)$ and $N_{n}\left(\Delta_{1}=1.3\right)$ for bond trees. We have also estimated an exponent δ characterising the density distribution; $\delta=2.69$ for the triangular lattice.

1. Introduction

Lattice animals and lattice trees (i.e. lattice animals with no loops) serve as models of random branch polymers in dilute solutions. The statistics of lattice animals is essentially identical to that of percolation clusters below percolation threshold (Family and Coniglio 1980, Harris and Lubensky 1981), and has been extensively investigated theoretically and numerically. However, such attempts for lattice trees are comparatively scarce although renormalisation group (RG) theories (Lubensky and Isaacson 1979, Family 1980, 1982a) predict that they are in the same universality class as animals.

For animals and trees, the mean-square radius of gyration R_{n}^{2} and the number of clusters N_{n} with n elements (bonds or sites) can be written for large n as

$$
\begin{equation*}
R_{n}^{2}=A n^{2 \nu}\left(1+B n^{-\Delta_{i}}+\ldots\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{n}=A^{\prime} n^{-\theta} \lambda^{n}\left(1+B^{\prime} n^{-\Delta_{1}}+\ldots\right) \tag{2}
\end{equation*}
$$

Here ν and θ are leading scaling exponents, and Δ_{1} is the correction-to-scaling exponent while λ is the (lattice-dependent) growth constant. Parisi and Sourlas (1981) have found the relations between the exponents (θ and ν) of animals in d dimensions and the exponent σ of the Lee-Yang edge singularity of the Ising model in $d-2$ dimensions (Fisher 1978):

$$
\begin{equation*}
\theta(d)=\sigma(d-2)+2 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu(d)=[\sigma(d-2)+1] /(d-2) . \tag{4}
\end{equation*}
$$

Substitution of the exact values $\sigma(0)=-1$ and $\sigma(1)=-\frac{1}{2}$ into (3) and (4) yields $\theta(2)=1$, $\theta(3)=\frac{3}{2}$ and $\nu(3)=\frac{1}{2}$ whereas $\nu(2)$ is undetermined. Combining (3) and (4) leads to

$$
\begin{equation*}
\nu=(\theta-1) /(d-2) . \tag{5}
\end{equation*}
$$

This equation suggests that there is only a single independent exponent for animal problems, as indicated by Family (1982b).

The Flory approximation (Isaacson and Lubensky 1980, Daoud and Joanny 1981) gives

$$
\begin{equation*}
\nu=5 /[2(d+2)] \tag{6}
\end{equation*}
$$

Combining (6) with (5), we have

$$
\begin{equation*}
\theta=(7 d-6) /[2(d+2)] \tag{7}
\end{equation*}
$$

Equations (6) and (7) reproduce not only the exact values of (3) and (4) for $d=2$ and $d=3$ excepting $\nu(2)$ but also the exact results $\nu(4)=\frac{5}{12}$ and $\theta(4)=\frac{11}{6}$ given by Dhar $(1983,1986)$ from the exact solution of the hard-square lattice-gas model. For $d=8$, (6) and (7) give the Cayley tree values: $\nu=\frac{1}{4}$ (Zimm and Stockmayer 1949) and $\theta=\frac{5}{2}$ (Fisher and Essam 1961); this suggests that the critical dimension $d_{c}=8$, as predicted from a field-theoretical calculation (Lubensky and Isaacson 1979) and confirmed from exact enumerations (Gaunt 1980). Recently, Gujrati (1988) has asserted $d_{c}=4$, and that any critical exponents cannot be defined for a single branch polymer since such a system exhibits a first-order transition.

Equation (6) predicts $\nu=0.625$ for $d=2$. Family (1983) has obtained a value consistent with it from the real space RG approach for bond animals (i.e. weak embeddings) while $\nu=0.649$ for site animals (i.e. strong embeddings). Results from the finite-size scaling renormalisation method for site animals are, however, reconciled with $\nu=0.6408$ (Derrida and DeSeze 1982, Derrida and Stauffer 1985, Kertész 1986). Most Monte Carlo estimates of ν are in the range 0.64-0.65 (Gould and Holl 1981, Djordjevic et al 1984, Havlin et al 1984, Caracciolo and Glaus 1985, Dhar and Lam 1986) while an exact enumeration (Peters et al 1979) gives $\nu=0.65$.

As for N_{n}, the exact value $\theta=1$ in 2D is confirmed from exact enumerations (Gaunt et al 1976, Guttmann and Gaunt 1978, Peters et al 1979, Adler et al 1988) and a Monte Carlo technique (Caracciolo and Glaus 1985). The first estimation of Δ_{1} has been done by Guttmann and Gaunt (1978) from the analysis of exact series data for site and bond animals assuming $\theta=1$; they estimate $\Delta_{1} \simeq 1$ although a tendency Δ_{1} (bond) $>$ $\Delta_{1}\left(\right.$ site) is found. Similarly, Guttmann (1982) has obtained, however, $\Delta_{1}=0.87$ by exploiting the longer series given by Redelmeier (1981). Other methods (Margolina et al 1983, Privman 1984, Adler et al 1988) using the same data are in favour of this value while Margolina et al (1984b) have estimated $\Delta_{1}=0.75$ from another series analysis.

Privman (1984) has obtained $\Delta_{1}=0.83$ and $\nu=0.6412$ by applying the method of Adler et al (1983) to the finite-size scaling data of Derrida and DeSeze (1982). On the other hand, Margolina et al (1984a) have found $\nu=0.640$ by analysing the R_{n} series of Peters et al (1979) with the method of Privman and Fisher (1983) for the choice of Guttmann's value $\Delta_{1}=0.87$. Assuming this value of ν, Family et al (1985) have estimated Δ_{1} consistent with Guttmann's value from the analysis of the anisotropy of the radius of gyration tensor; the unbiased estimate without that assumption gives $\Delta_{1}=1.01$. Lam (1986) has estimated $\Delta_{1}=0.5$ from R_{n} series assuming $\nu=0.6406$.

Gaunt et al (1982) as well as Duarte and Ruskin (1981) have shown that $\theta=1$ for bond and site trees in 2D on the basis of exact enumerations; this confirms that both site and bond trees belong to the same universality class as site and bond animals. Seitz and Klein (1981) have estimated $\nu=0.615$ for trees while the real space RG calculation (Family 1980) gives $\nu=0.6370$. Recent Monte Carlo approaches (Caracciolo and Glaus 1985, Meirovitch 1987) estimate $\nu=0.640$ and $\theta=1.00$ for bond trees by assuming $\Delta_{1}=1$; these estimates are in accord with the animal values.

The density distribution $P_{n}(\boldsymbol{r})$ at a point r from the centre of mass of n-clusters can be described using an exponent δ as

$$
\begin{equation*}
P_{n}(\boldsymbol{r}) \simeq A \exp \left[a\left(r / R_{n}\right)^{\delta}\right] \tag{8}
\end{equation*}
$$

for sufficiently large n (Stauffer 1978a). Herrmann (1979) has assessed $\delta=2.6$ for animals in 2D by use of the Monte Carlo data given by Peters et al (1979).

In this paper, we estimate the values of $\lambda, \theta, \nu, \Delta_{1}$ and δ in 2 D using the exact series data newly obtained for bond trees (i.e. lattice animals without loops and weakly embeddable in the lattice) on the square (sQ) and triangular (TRI) lattices; much attention is paid to ν, Δ_{1} and δ. To our knowledge, the estimation of Δ_{1} and δ is the first attempt for lattice trees although the analysis of the anisotropy of the radius of gyration tensor by Family et al (1985) suggests that Δ_{1} is equivalent for animal and tree.

2. Exact enumerations

We have carried out exact enumerations of n-bond trees on the TRI and SQ lattices for up to $n=11$ and 14, respectively, by exploiting the Martin algorithm (Martin 1974, Redner 1982). We have added three more terms to both the existing series of N_{n} for the TRI (Duarte and Ruskin 1981) and sQ (Gaunt et al 1982) lattices while the R_{n} series were new; these series are reproduced in table 1 . The series for $P_{n}(\boldsymbol{r})(n \leqslant 11)$ for the TRI lattice were enumerated in the form of $N_{n} P_{n}\left(q_{1}, q_{2}\right)$ using the oblique coordinate system, where $r^{2}=q_{1}^{2}+q_{1} q_{2}+q_{2}^{2}$ (see Ishinabe 1987). For the se lattice

Table 1. Exact series of N_{n} and R_{n} for the SQ and TRI lattices.

n	SQ		TRI	
	N_{n}	$(n+1)^{2} N_{n} R_{n}^{2}$	N_{n}	$(n+1)^{2} N_{n} R_{n}^{2}$
1	2	2	3	3
1	6	28	15	66
3	22	276	89	1050
4	87	2320	576	14334
5	364	17780	3930	178578
6	1574	127844	27782	2092416
7	6986	879036	201414	23454906
8	31581	5839760	1488048	254233146
9	144880	37772428	11156061	2683896297
10	672390	239082260	84622074	27735573846
11	3150362	1486548912	648039990	281619667638
12	14877317	9105610904		
13	70726936	55068644440		
14	338158676	329401857232		

only the series $N_{n} P_{n}(x)(n \leqslant 14)$ of the x-component distribution were obtained, owing to our computer memory. These P_{n} series are not given here since the tables are too lengthy to reproduce, but they are available upon request.

3. Series analysis

3.1. Radius of gyration

We estimate ν and Δ_{1} following a method (Ishinabe 1988,1989) based on the conventional technique of series analysis combined with the finite-size scaling idea of Privman and Fisher (1983), employing the cancellation of leading correction terms. First we evaluate the ratios \dagger

$$
\begin{equation*}
\nu_{n, k}=\frac{1}{2} n\left(\rho_{n+k} / \rho_{n}-1\right) / k \tag{9}
\end{equation*}
$$

for $k=1$ or 2 , where $\rho_{n} \equiv R_{n}^{2}$. The ratios $(k=1)$ of adjacent terms are used for the TRI lattice while the alternate ratios $(k=2)$ are used for the SQ lattice. After forming these ratios, we construct the Neville table (e.g. Gaunt and Guttmann 1974) for linear, quadratic and cubic extrapolants

$$
\begin{equation*}
\nu_{n, k}^{(r)}=\left[n \nu_{n, k}^{(r-1)}-(n-k r) \nu_{n-k, k}^{(r-1)}\right] / k r \tag{10}
\end{equation*}
$$

for $r=1-3$, with $\nu_{n, k}^{(0)} \equiv \nu_{n, k}$. We determine the first trial value of ν by plotting these extrapolants against n^{-1} and extrapolate to $n \rightarrow \infty$, having in mind the curvature of convergence as a whole together with damping oscillations. Then the estimators

$$
\begin{equation*}
B_{n, k}\left(\Delta_{1}\right)=\frac{\rho_{n}(n-k)^{2 \nu} \rho_{n-k} n^{2 \nu}}{\rho_{n-k} n^{2 \nu-\Delta_{1}}-\rho_{n}(n-k)^{2 \nu-\Delta_{1}}} \tag{11}
\end{equation*}
$$

are constructed. The curves $B_{n, k}\left(\Delta_{1}\right)$ as a function of Δ_{1} for different n intersect at a point close to the correct Δ_{1} if ν is known; approximate values of Δ_{1} and B can be estimated for the trial ν. We perform the transformation $\rho_{n}^{*}=\rho_{n} /\left(1+B n^{-\Delta_{1}}\right)$, using the result to eliminate the singular term. Similarly, the improved ν is estimated from ρ_{n}^{*} series. Thus we get reliable estimates of ν and Δ_{1} by repeating the above procedure several times. We can also estimate Δ_{1} and A from the estimators (Privman 1984)

$$
\begin{equation*}
A_{n, k}\left(\Delta_{1}\right)=\frac{\rho_{n} n^{\Delta_{1}-2 \nu}-\rho_{n-k}(n-k)^{\Delta_{1}-2 \nu}}{n^{\Delta_{1}}-(n-k)^{\Delta_{1}}} . \tag{12}
\end{equation*}
$$

Figure 1 illustrates the first plots of $\nu_{n, 2}^{(r)}\left(r=1\right.$ and 2) against n^{-1} for the sQ lattice; we get $\nu=0.640 \pm 0.008$ as a trial value. Using this value, we have $\Delta_{1}=0.67$ and $B=1.24$ from the intersection of $B_{n, 2}\left(\Delta_{1}\right)$ curves for different n. An improved estimate of ν is obtained by exploiting the transformed series ρ_{n}^{*}; some terms in the appropriate Neville table of $\nu_{n, 2}^{(r)}(r=1-3)$ for ρ_{n}^{*} are listed in table 2. We take $\nu=0.644 \pm 0.004$ as our final estimate in view of the increase in the last five terms of $\nu_{n, 2}^{(1)}$ as n increases, but with a tendency to be somewhat bowed downwards, and the upwards trend as a whole with a slight odd-even oscillation in those of $\nu_{n, 2}^{(2)}$. We show $B_{n, 2}\left(\Delta_{1}\right)$ curves for $n=10-14$ for $\nu=0.644$ in figure 2; the successive average $\bar{B}_{n, 2}=\frac{1}{2}\left(B_{n-1,2}+B_{n, 2}\right)$ is employed in place of $B_{n, 2}$ to lessen the odd-even effect for the sQ lattice, but we omit the bar in

[^0]

Figure 1. Ratio estimate of ν from linear $(r=1)$ and quadratic $(r=2)$ extrapolants $\nu_{n, 2}^{(r)}$ for the sQ lattice.

Table 2. Neville table for the estimation of ν from transformed R_{n} series for the SQ lattice.

n	$\nu_{n, 2}$	$\nu_{n, 2}^{(1)}$	$\nu_{n, 2}^{(2)}$	$\nu_{n, 2}^{(3)}$
6	0.669207	0.63591	0.63224	
7	0.664891	0.63557	0.63670	0.61072
8	0.661461	0.63822	0.64053	0.64329
9	0.659009	0.63842	0.64198	0.64462
10	0.657113	0.63972	0.64197	0.64293
11	0.655629	0.64042	0.64391	0.64551
12	0.654445	0.64111	0.64388	0.64580

Figure 2. Curves of $B_{n, 2}\left(\Delta_{\mathrm{l}}\right)$ for the input $\nu=0.644$ for the $S Q$ lattice.

Figure 3. Curves of $A_{n, 1}\left(\Delta_{1}\right)$ for the imput $\nu=0.648$ for the TRI lattice.
$\bar{B}_{n, 2}$. We get $\Delta_{1}=0.635$ and $B=1.318$; almost the same value of Δ_{1} is estimated from the corresponding $A_{n, 2}\left(\Delta_{1}\right)$ curves. We take $\Delta_{1}=0.635 \pm 0.03$ as our final estimate; the error limit is determined by considering that of ν. Similarly, we estimate $\nu=$ 0.648 ± 0.005 for the TRI lattice; some terms in the corresponding Neville table of $\nu_{n, 1}^{(r)}$ ($r=1-3$) for ρ_{n}^{*} series are reproduced in table 3. The $A_{n, 1}\left(\Delta_{1}\right)$ curves for $n=7-11$ for $\nu=0.648$ are depicted in figure 3; we get $\Delta_{1}=0.635 \pm 0.02$ and $A=0.1156$. The intersection of such curves for $B_{n, 1}\left(\Delta_{1}\right)$ gives the same value of Δ_{1} and $B=1.528$.

3.2. Number of trees

For N_{n} series we form

$$
\begin{equation*}
\lambda_{n, k}=\left(N_{n} / N_{n-k}\right)^{1 / k} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{n, k}^{(r)}=-n\left(\lambda_{n, k} / \lambda_{n, k}^{(r)}-1\right) \tag{14}
\end{equation*}
$$

where $\lambda_{n, k}^{(r)}(r=1-3)$ are the r th extrapolants of $\lambda_{n, k}$ defined as in (10), and $k=1$ (TRI) and 2 (sQ). The plots of $\theta_{n, 2}^{(r)}$ against n^{-1} for $r=1$ and 2 are shown in figure 4 for the sQ lattice; they suggest $\theta=1.01 \pm 0.015$ while we have $\theta=1.01 \pm 0.02$ from the similar plots of $\theta_{n, 1}^{(r)}$ for the TRI lattice. Our results are compatible with the other estimates for lattice trees (Duarte and Ruskin 1981, Gaunt et al 1982) and in good agreement

Table 3. Neville table for the estimation of ν from transformed R_{n} series for the TRI lattice.

n	$\nu_{n, 1}$	$\nu_{n, 1}^{(1)}$	$\nu_{n, 1}^{(2)}$	$\nu_{n, 1}^{(3)}$
4	0.666652	0.63745	0.63459	0.63357
5	0.660656	0.63667	0.63551	0.63613
6	0.657066	0.63911	0.64399	0.65247
7	0.654665	0.64026	0.64313	0.64199
8	0.652980	0.64119	0.64396	0.64534
9	0.651789	0.64226	0.64602	0.65015
10	0.650920	0.64309	0.64641	0.64733

Figure 4. Ratio estimate of θ from linear $(r=1)$ and quadratic $(r=2)$ extrapolants $\theta_{n, 2}^{(r)}$ for the SQ lattice.
with the commonly accepted value $\theta=1$ for lattice animals in 2D. The analogous plots for $\lambda_{n, k}^{(r)}$ produce $\lambda=5.140 \pm 0.008$ and $\lambda=8.41 \pm 0.02$ for the sQ and TRI lattices, respectively. These values are compared with the corresponding estimates $\lambda=$ 5.14 ± 0.01 (Gaunt et al 1982) and $\lambda=8.40 \pm 0.03$ (Duarte and Ruskin 1981).

If λ and θ are evaluated, we can estimate Δ_{1} from a method similar to that for R_{n} by forming

$$
\begin{equation*}
A_{n, k}^{\prime}\left(\Delta_{1}\right)=\frac{N_{n} n^{\Delta_{1}+\theta}-N_{n-k} \lambda^{k}(n-k)^{\Delta_{1}+\theta}}{\lambda^{n}\left[n^{\Delta_{1}}-(n-k)^{\Delta_{1}}\right]} \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
B_{n, k}^{\prime}\left(\Delta_{1}\right)=\frac{N_{n}(n-k)^{-\theta}-N_{n-k} \lambda^{k} n^{-\theta}}{N_{n-k} \lambda^{k} n^{-\theta-\Delta_{1}}-N_{n}(n-k)^{-\theta-\Delta_{1}}} . \tag{16}
\end{equation*}
$$

It is practically difficult, however, to reliably estimate Δ_{1} in this case since the confidence of the estimate has a strong dependence on error limits of both λ and θ. We then evaluate

$$
\begin{equation*}
\lambda_{n, k}=\left[n N_{n} /(n-k) N_{n-k}\right]^{1 / k} \tag{13'}
\end{equation*}
$$

instead of (13) assuming $\theta=1$, and estimate Δ_{1} and B^{\prime} by exploiting (16) with $\theta=1$. A reliable value of λ is obtained using the transformation $N_{n}^{*}=N_{n} /\left(1+B^{\prime} n^{-\Delta_{1}}\right)$.

Figure 5 shows $B_{n, 2}^{\prime}\left(\Delta_{1}\right)$ curves ($n=11-14$) for the sQ lattice for $\lambda=5.143$ obtained from (13^{\prime}); the intersection of the curves yields $B^{\prime}=-0.376$ and $\Delta_{1}=1.34 \pm 0.50$, where the error limit is estimated by considering that of λ. The corresponding estimate for $A_{n, 2}^{\prime}\left(\Delta_{1}\right)$ gives $A^{\prime}=0.527$ and the same Δ_{1}. The improved value $\lambda=5.142 \pm 0.002$ is obtained for the sQ lattice from the transformed N_{n}^{*} series. Similarly, we have $\Delta_{1}=1.26 \pm 0.50, A^{\prime}=0.4884, B^{\prime}=-0.312$ and $\lambda=8.412 \pm 0.004$ for the TRI lattice. We reproduce some terms in the Neville tables of $\lambda_{n, 2}^{(r)}$ and $\lambda_{n, 1}^{(r)}(r=1-3)$ for N_{n}^{*} series in tables 4 and 5 for the SQ and TRI lattices, respectively.

3.3. Density distribution

In figure 6 we show the cross sections of $P_{n}(\boldsymbol{r})$ in different directions as a function of r / R_{n}; they were obtained from our enumeration data for $n=11$ for the TRI lattice.

Figure 5. Curves of $B_{n, 2}^{\prime}\left(\Delta_{1}\right)$ for the inputs $\lambda=5.143$ and $\theta=1$ for the SQ lattice.

T Ishinabe

Table 4. Neville table for the estimation of λ from transformed N_{n} series for the SQ lattice.

n	$\lambda_{n, 2}$	$\lambda_{n, 2}^{(1)}$	$\lambda_{n, 2}^{(2)}$	$\lambda_{n, 2}^{(3)}$
8	5.143315	5.14528	5.10597	5.92289
9	5.142797	5.14807	5.12921	5.31751
10	5.143103	5.14226	5.13772	5.15889
11	5.143038	5.14412	5.13721	5.14388
12	5.143051	5.14279	5.14386	5.15000
13	5.143037	5.14303	5.14058	5.14450
14	5.143030	5.14291	5.14321	5.14234

Table 5. Neville table for the estimation of λ from transformed N_{n} series for the TRI lattice.

n	$\lambda_{n, 1}$	$\lambda_{n, 1}^{(1)}$	$\lambda_{n, 1}^{(2)}$	$\lambda_{n, 1}^{(3)}$
6	8.408297	8.40566	8.41125	8.50909
7	8.407414	8.40212	8.39326	8.36927
8	8.407016	8.40423	8.41057	8.43942
9	8.406937	8.40631	8.41356	8.41955
10	8.406945	8.40701	8.40985	8.40117
11	8.407016	8.40773	8.41094	8.41387

Figure 6. Cross sections of $P_{n}(\boldsymbol{r})(n=11)$ for the TRI lattice in different directions: $x\left(=q_{1}\right)$ axis $(O), 19.1^{\circ}$ from the axis (\triangle) and 30° from the x axis (\square). The full curve represents (8) for $\delta=2.69$.

These plots suggest that the circular symmetry of $P_{n}(\boldsymbol{r})$ is maintained in this case and $P_{n}(\boldsymbol{r})$ can be described by a single exponent δ although the plots are somewhat dispersed for $r / R_{n}<1$; such dispersion is also noticed in Monte Carlo data for lattice animals (Stauffer 1978b).

Reduced radial moments are defined by

$$
\begin{equation*}
m_{2 k}^{(n)}=\left\langle r_{n}^{2 k}\right\rangle /\left\langle r_{n}^{2}\right\rangle^{k} \tag{17}
\end{equation*}
$$

where the mean values $\left\langle r_{n}^{2 k}\right\rangle$ of $2 k$ th power of r are evaluated from

$$
\begin{equation*}
\left\langle r_{n}^{2 k}\right\rangle=\sum_{\boldsymbol{r}} r^{2 k} P_{n}(\boldsymbol{r}) /(n+1) . \tag{18}
\end{equation*}
$$

The reduced moments of function (8) can be expressed in terms of gamma functions (McKenzie 1973)

$$
\begin{equation*}
m_{2 k}=\frac{\Gamma((d+2 k) / \delta)}{\Gamma(d / \delta)}\left(\frac{\Gamma(d / \delta)}{\Gamma((d+2) / \delta)}\right)^{k} . \tag{19}
\end{equation*}
$$

We calculate $m_{2 k}^{(n)}$ for $k=2-6$ for the TRI lattice to estimate the limiting values of $m_{2 k}^{(\infty)}$ by plotting the extrapolants $m_{n, 1}^{(r)}\left(r=1\right.$ and 2) against n^{-1}. An example ($k=2$) of the estimation is depicted in figure 7; we obtain $m_{4}^{(\infty)}=1.765 \pm 0.008$, having in mind the monotonic trend of the plots. The values of $m_{2 k}^{(\infty)}$ thus estimated are listed in table 6 together with those of $m_{2 k}^{(n)}$ for $n \leqslant 11$. We compare the $m_{2 k}^{(\infty)}$ values with the table of $m_{2 k}$ evaluated from (19) for each k for the appropriate δ to find a region of δ such that each value of $m_{2 k}^{(\infty)}(k=2-6)$ is contained in the corresponding region of $m_{2 k}$. Thus we have

$$
\begin{equation*}
\delta=2.69_{-0.10}^{+0.11} \tag{20}
\end{equation*}
$$

where the error limit is taken in view of the estimated errors in $m_{2 k}^{(\infty)}$; our value is compatible with the value $\delta=2.6$ for a lattice animal given by Herrmann (1979). The $m_{2 k}$ values calculated from (19) for $\delta=2.69$ are also given in table 6 (in parentheses) for the sake of comparison. The full curve in figure 6 represents $P_{n}(r)$ which is best-fitted to the data of $n=11$, i.e. $A=0.00592$, and $a=0.6309$ with $\delta=2.69$.

For the sQ lattice, we consider the x component quantities

$$
\begin{equation*}
M_{2 k}^{(n)}=\left\langle x_{n}^{2 k}\right\rangle /\left\langle x_{n}^{2}\right\rangle^{k} \tag{21}
\end{equation*}
$$

Figure 7. Plots of linear and quadratic extrapolants $m_{n, 1}^{(n)}$ of $m_{4}^{(n)}$ against n^{-1} for the TRI lattice.

Table 6. Values of $m_{2 k}^{(n)}(k=1-6)$ and $m_{2 k}^{(\infty)}$ for the TRI lattice.

n	$m_{4}^{(n)}$	$m_{6}^{(n)}$	$m_{8}^{(n)}$	$m_{10}^{(n)}$	$m_{12}^{(n)}$
1	1.000000	1.000000	1.000000	1.000000	1.000000
2	1.425620	2.343163	4.129030	7.550743	14.128882
3	1.563978	3.042198	6.699744	15.927908	39.830034
4	1.630428	3.428300	8.438464	23.048611	67.660481
5	1.668653	3.664857	9.612789	28.511521	92.396121
6	1.693106	3.821168	10.431771	32.617885	112.792427
7	1.709803	3.929824	11.020040	35.710925	129122067
8	1.721775	4.008538	11.455069	38.070877	142.110532
9	1.730685	4.067444	11.784958	39.898950	152.470558
10	1.737505	4.112652	12.040321	41.335274	160.784904
11	1.742845	4.148074	12.241507	42.478851	167.509008
∞	1.765 ± 0.008	4.29 ± 0.05	13.0 ± 0.5	46.5 ± 3.5	197 ± 28
	(1.7622)	(4.278)	(12.99)	(46.86)	$(194.3) \dagger$

\dagger The figures in parentheses are the values of $m_{2 k}$ calculated from (19) for $\delta=2.69$.
and

$$
\begin{equation*}
M_{2 k}=\frac{\Gamma((2 k+1) / \delta)}{\Gamma(1 / \delta)}\left(\frac{\Gamma(1 / \delta)}{\Gamma(3 / \delta)}\right)^{k} \tag{22}
\end{equation*}
$$

since we only have the series of x component distribution $P_{n}(x) \sim \exp \left[a^{\prime}\left(x / R_{n}\right)^{\delta}\right]$ (Domb et al 1965). Following the method mentioned above, we get the estimate $\delta=2.54 \pm 0.12$, which is somewhat smaller than (20).

We list the values of $M_{2 k}^{(n)}(n \leqslant 14), M_{2 k}^{(\infty)}$, and $M_{2 k}$ for $\delta=2.54$ in table 7 for $k=2-6$. The corresponding value of δ for the TRI lattice is $\delta=2.52 \pm 0.10$.

Table 7. Values of $M_{2 k}^{(n)}(k=1-6)$ and $M_{2 k}^{(\infty)}$ for the sQ lattice.

n	$\boldsymbol{M}_{4}^{(n)}$	$\boldsymbol{M}_{6}^{(n)}$	$\boldsymbol{M}_{8}^{(n)}$	$\boldsymbol{M}_{10}^{(n)}$	$\boldsymbol{M}_{12}^{(n)}$
1	2.000000	4.00000	8.00000	16.00000	32.00000
2	2.387755	7.53061	26.52770	98.15714	371.53394
3	2.516068	9.23000	40.69660	198.02959	1020.74293
4	2.574828	9.91940	47.95817	266.46504	1617.24874
5	2.607107	10.32223	52.44377	313.47939	2092.88768
6	2.626568	10.55430	55.10606	343.70820	2432.11996
7	2.639375	10.70605	56.85767	364.29910	2677.18571
8	2.648074	10.80548	58.00101	378.09535	2848.92377
9	2.654219	10.87373	58.77863	387.60436	2970.84894
10	2.658677	10.92158	59.31500	394.20681	3057.41759
11	2.661964	10.95554	59.68854	398.82109	3119.03243
12	2.664423	10.97989	59.94983	402.04936	3162.83498
13	2.666279	10.99737	60.13175	404.29344	3193.78161
14	2.667684	11.00982	60.25629	405.82514	3215.31468
∞	2.650 ± 0.008	10.7 ± 0.1	56.2 ± 1.2	350 ± 14	2400 ± 200
	(2.6100)	(10.434)	(54.96)	(355.1)	$(2698) \dagger$

[^1]
4. Discussion and conclusion

Critical parameters estimated for bond trees on the sQ and Tri lattices are listed in table 8. The values of ν are reconciled with most Monte Carlo results $\nu=0.64-0.65$ for lattice animals and $\nu=0.649 \pm 0.009$ from the real space RG theory (Family 1983), while not consistent with the Flory value of $\frac{5}{8}$. Recent Monte Carlo estimations (Caracciolo and Glaus 1985, Meirovitch 1987) and the finite-size scaling renormalisation method (Derrida and Stauffer 1985) give slightly smaller values $\nu=0.640 \pm 0.008$ and $\nu=0.64075 \pm 0.00015$ for bond trees and site animals, respectively; they are almost on the limits of the estimated uncertainties in our estimates.

Table 8. Critical values estimated from (a) R_{n} and (b) N_{n} series for the SQ and TRI lattices.
(a)

Lattices	ν	Δ_{1}	A	B
SQ	0.644 ± 0.004	0.635 ± 0.03	0.1156	1.318
TRI	0.648 ± 0.005	0.635 ± 0.02	0.1021	1.528

(b) \dagger

	λ	Δ_{1}	\boldsymbol{A}^{\prime}	\boldsymbol{B}^{\prime}
SQ	5.142 ± 0.002	1.34 ± 0.5	0.527	-0.376
TRI	8.412 ± 0.004	1.26 ± 0.5	0.488	-0.312

$\dagger \theta=1$ is assumed.
Our estimation of Δ_{1} from R_{n} series yields a smaller value than the commonly accepted value $\Delta_{1}=0.87 \pm 0.06$ for lattice animals given by Guttmann (1982) while that from N_{n} series yields a significantly larger value. Our estimation of Δ_{1} is dependent on a given value of ν or λ. The dependence is, however, very weak for R_{n}; we have $\Delta_{1}=0.67$ and 0.66 for the SQ and TRI lattices, respectively, if $\nu=0.640$ is adopted. We have checked our method using the existing series of $N_{n}(n \leqslant 24)$ obtained by Redelmeier (1981) for a site animal on the sQ lattice. We have $\Delta_{1}=0.83 \pm 0.06, A^{\prime}=0.3174$ and $B^{\prime}=-0.412$ assuming $\theta=1$ and $\lambda=4.0626 \pm 0.0002$ (Guttmann 1982); the value of Δ_{1} is consistent with the accepted value, and A^{\prime} and B^{\prime} are compared with Guttmann's $A=0.317$ and $B^{\prime}=-0.465$. We also obtain $\Delta_{1}=0.78 \pm 0.05, A=0.1897, B=-0.748$ and $\nu=0.641 \pm 0.002$ by applying our method to the R_{n} series ($n \leqslant 19$) of Lam (1986); they are reconciled with accepted values for lattice animals. Hence, our results suggest a possibility that Δ_{1} is different not only between trees and animals but also between R_{n} and N_{n} for lattice trees although it is not very conclusive in the latter case due to large error limit of Δ_{1} for N_{n}.

We have tried another approach to estimate Δ_{1} for N_{n} following Privman (1984). Putting $\theta=1$ we form

$$
\begin{equation*}
\lambda_{n, k}\left(\Delta_{1}\right)=\left(\frac{\lambda_{n, k} n^{\Delta_{1}+1}-\lambda_{n-k, k}(n-k)^{\Delta_{1}+1}}{n^{\Delta_{1}+1}-(n-k)^{\Delta_{1}+1}}\right)^{1 / k} \tag{23}
\end{equation*}
$$

for the TRI $(k=1)$ and SQ ($k=2$) lattices, where $\lambda_{n, k}$ is evaluated from (13'). The values of λ and Δ_{1} are estimated simultaneously from the intersection of $\lambda_{n, k}\left(\Delta_{1}\right)$ curves for different n. The results are $\lambda=8.409$ and $\Delta_{1}=1.02$ for the TRI lattice while $\lambda=5.144$ and $\Delta_{1}=1.73$ for the sQ lattice. The marked discrepancy in Δ_{1} between two lattices
suggests the error limit of Δ_{1} is very large also in this unbiased method. It seems that these results are not in contradiction with our estimates of Δ_{1} in view of the uncertainties of estimates.

In conclusion, we have obtained new series for R_{n} and $P_{n}(\boldsymbol{r})$ for bond trees on the TRI and sQ lattices while some new terms are added to the extant data of N_{n}. Respective estimates of leading scaling exponents ν, θ and δ from R_{n}, N_{n} and $P_{n}(\boldsymbol{r})$ series are in accord with those for lattice animals to confirm the hypothesis that trees are in the same university class as animals. Estimates of the correction-to-scaling exponent Δ_{1} are different from the accepted value for animals. In addition, they suggest that Δ_{1} is different between R_{n} and N_{n} for lattice trees.

Acknowledgments

I am grateful to Y Arai for assistance with computational work, and also the referee for comments. This work was partly supported by a Grant-in-Aid from the Ministry of Education, Science, and Culture, Japan (No. 63303010).

References

Adler J, Meir Y, Harris A B, Aharony A and Duarté J A M S 1988 Phys. Rev. B 384941
Adler J, Moshe M and Privman V 1983 Percolation Structures and Processes ed G Deutscher, R Zallen and J Adler (Bristol: Adam Hilger)
Caracciolo S and Glaus U 1985 J. Stat. Phys. 4195
Daoud M and Joanny J F 1981 J. Physique 421359
Derrida B and DeSeze L 1982 J. Physique 43475
Derrida B and Stauffer D 1985 J. Physique 461623
Dhar D 1983 Phys. Rev. Lett. 51853
-_ 1986 Physica 140A 210
Dhar D and Lam P M 1986 J. Phys. A: Math. Gen. 19 L1057
Djordjevic Z V, Havlin S, Stanley H E and Weiss G H 1984 Phys. Rev. B 30478
Domb C, Gillis J and Wilmers G 1965 Proc. Phys. Soc. 85625
Duarte J A M S and Ruskin H J 1981 J. Physique 421585
Family F 1980 J. Phys. A: Math. Gen. 13 L325

- 1982a Phys. Lett. 92A 341
- 1982b J. Phys. A: Math. Gen. 15 L583
- 1983 J. Phys. A: Math. Gen. 16 L97

Family F and Coniglio A 1980 J. Phys. A: Math. Gen. 13 L403
Family F, Vicsek T and Meakin P 1985 Phys. Rev. Lett. 55641
Fisher M E 1978 Phys. Rev. Lett. 401610
Fisher M E and Essam J W 1961 J. Math. Phys. 2609
Gaunt D S 1980 J. Phys. A: Math. Gen. 13 L97
Gaunt D S and Guttmann A J 1974 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S Green (New York: Academic)
Gaunt D S, Sykes M F and Ruskin H 1976 J. Phys. A: Math. Gen. 91899
Gaunt D S, Sykes M F, Torrie G M and Whittington S G 1982 J. Phys. A: Math. Gen. 153209
Gould H and Holl K 1981 J. Phys. A: Math. Gen. 14 L443
Gujrati P D 1988 Phys. Rev. A 385840
Guttmann A J 1982 J. Phys. A: Math. Gen. 151987
Guttmann A J and Gaunt D S 1978 J. Phys. A: Math. Gen. 11949
Harris A B and Lubensky T C 1981 Phys. Rev. B 233591
Havlin S, Djordjevic Z V, Majid I, Stanley H E and Weiss G H 1984 Phys. Rev. Lett. 53178
Herrmann H J 1979 Z. Phys. B 32335

Isaacson J and Lubensky T C 1980 J. Physique Lett. 41469
Ishinabe T 1987 J. Chem. Phys. 866366

- 1988 Phys. Rev. В 372376
- 1989 Phys. Rev. B 399468

Kertész J 1986 J. Phys. A: Math. Gen. 19599
Lam P M 1986 Z. Phys. B 64227
Lubensky T C and Isaacson J 1979 Phys. Rev. A 202130
Margolina A, Djordjevic Z V, Stauffer D and Stanley H E 1983 Phys. Rev. B 281652
Margolina A, Family F and Privman V 1984a Z. Phys. B 54321
Margolina A, Nakanishi H, Stauffer D and Stanley H E 1984b J. Phys. A: Math. Gen. 171683
Martin J L 1974 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S Green (New York: Academic)
McKenzie D S 1973 J. Phys. A: Math. Gen. 6338
Meirovitch H 1987 J. Phys. A: Math. Gen. 206059
Parisi G and Sourlas N 1981 Phys. Rev. Lett. 46871
Peters H P, Stauffer D, Hölters H P and Loewenich K 1979 Z. Phys. B 34399
Privman V 1984 Physica 123A 428
Privman V and Fisher M E 1983 J. Phys. A: Math. Gen. 16 L295
Redelmeier D H 1981 Discrete Math. 36191
Redner S 1982 J. Stat. Phys. 29309
Seitz W A and Klein D J 1981 J. Chem. Phys. 755190
Stauffer D 1978a Z. Phys. B 30173
_- 1978b Phys. Rev. Lett. 411333
Zimm B H and Stockmayer W H 1949 J. Chem. Phys. 171301

[^0]: † We also used the ratios $\nu_{n, k}=\frac{1}{2} \ln \left(\rho_{n} / \rho_{n-k}\right) / \ln [n /(n-k)]$, but they yield almost the same values as are obtained from (9).

[^1]: \dagger The figures in parentheses are the values of $M_{2 k}$ calculated from (22) for $\delta=2.54$.

