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Abstract. We have analysed the newly obtained series of the radius of gyration R,, and 
the number of clusters N,, for n-bond trees (i.e. branch polymers without loops) on the 
square ( n  G 14) and triangular ( n  G 11) lattices to estimate the critical parameters. Respec- 
tive estimates of the exponents v and 0 for R,, and N,, are consistent with the corresponding 
values for lattice animals, while the correction-to-scaling exponent A i  is inconsistent with 
the animal value. In addition, A ,  has different values for R,, ( A i  = 0.635) and N,, ( A ,  = 1.3) 
for bond trees. We have also estimated an exponent S characterising the density distribu- 
tion; 8 = 2.69 for the triangular lattice. 

1. Introduction 

Lattice animals and lattice trees (i.e. lattice animals with no loops) serve as models of 
random branch polymers in dilute solutions. The statistics of lattice animals is essen- 
tially identical to that of percolation clusters below percolation threshold (Family and 
Coniglio 1980, Harris and Lubensky 1981), and has been extensively investigated 
theoretically and numerically. However, such attempts for lattice trees are compara- 
tively scarce although renormalisation group ( RG) theories (Lubensky and Isaacson 
1979, Family 1980, 1982a) predict that they are in the same universality class as animals. 

For animals and trees, the mean-square radius of gyration R; and the number of 
clusters N,, with n elements (bonds or sites) can be written for large n as 

R; = An2"( 1 + Bn-"l+.  . .) (1) 

and 

N,, =A'n-'An(l+B'n-"I+. . .). 
Here Y and 0 are leading scaling exponents, and A ,  is the correction-to-scaling exponent 
while A is the (lattice-dependent) growth constant. Parisi and Sourlas (1981) have 
found the relations between the exponents ( 0  and Y )  of animals in d dimensions and 
the exponent U of the Lee-Yang edge singularity of the Ising model in d - 2 dimensions 
(Fisher 1978): 

e ( d ) = U ( d - 2 ) + 2  (3) 

and 

v ( d )  = [u(d - 2) + l ] / (d - 2). (4) 
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Substitution ofthe exact values a(0) = -1 and a(1)  = -;into (3) and (4) yields 6(2) = 1, 
O(3) =+ and v(3)  =$ whereas v(2) is undetermined. Combining (3) and (4) leads to 

v = ( e - i ) / ( d - 2 ) .  (5) 

This equation suggests that there is only a single independent exponent for animal 
problems, as indicated by Family (1982b). 

The Flory approximation (Isaacson and Lubensky 1980, Daoud and Joanny 1981) 
gives 

v = 5/[2(d +2)]. (6) 

Combining (6) with (5), we have 

6 = (7 d - 6)/ [ 2( d + 2)]. (7) 

Equations (6) and (7) reproduce not only the exact values of (3) and (4) for d = 2  and 
d = 3 excepting v(2) but also the exact results v(4) = A  and 6(4) =? given by Dhar 
(1983, 1986) from the exact solution of the hard-square lattice-gas model. For d = 8, 
(6) and (7) give the Cayley tree values: v = 4 (Zimm and Stockmayer 1949) and I9 = 3 
(Fisher and Essam 1961); this suggests that the critical dimension d, = 8, as predicted 
from a field-theoretical calculation (Lubensky and Isaacson 1979) and confirmed from 
exact enumerations (Gaunt 1980). Recently, Gujrati (1988) has asserted d, = 4, and 
that any critical exponents cannot be defined for a single branch polymer since such 
a system exhibits a first-order transition. 

Equation (6) predicts v = 0.625 for d = 2. Family (1983) has obtained a value 
consistent with it from the real space RG approach for bond animals (i.e. weak 
embeddings) while v = 0.649 for site animals (i.e. strong embeddings). Results from 
the finite-size scaling renormalisation method for site animals are, however, reconciled 
with v = 0.6408 (Derrida and DeSeze 1982, Derrida and Stauffer 1985, KertCsz 1986). 
Most Monte Carlo estimates of v are in the range 0.64-0.65 (Gould and Holl 1981, 
Djordjevic et a1 1984, Havlin et a1 1984, Caracciolo and Glaus 1985, Dhar and Lam 
1986) while an exact enumeration (Peters et a1 1979) gives v = 0.65. 

As for N,, the exact value 0 = 1 in ZD is confirmed from exact enumerations (Gaunt 
et a1 1976, Guttmann and Gaunt 1978, Peters et a1 1979, Adler et a1 1988) and a Monte 
Carlo technique (Caracciolo and Glaus 1985). The first estimation of A, has been 
done by Guttmann and Gaunt (1978) from the analysis of exact series data for site 
and bond animals assuming I9 = 1; they estimate A I  = 1 although a tendency A,(bond) > 
Al(site) is found. Similarly, Guttmann (1982) has obtained, however, A ,  = 0.87 by 
exploiting the longer series given by Redelmeier (1981). Other methods (Margolina 
et a1 1983, Privman 1984, Adler et a1 1988) using the same data are in favour of this 
value while Margolina et a1 (1984b) have estimated A, = 0.75 from another series 
analysis. 

Privman (1984) has obtained A, = 0.83 and v = 0.6412 by applying the method of 
Adler et a1 (1983) to the finite-size scaling data of Derrida and DeSeze (1982). On 
the other hand, Margolina et a1 (1984a) have found v = 0.640 by analysing the R, 
series of Peters et a1 (1979) with the method of Privman and Fisher (1983) for the 
choice of Guttmann’s value A l  = 0.87. Assuming this value of v, Family et a1 (1985) 
have estimated A1 consistent with Guttmann’s value from the analysis of the anisotropy 
of the radius of gyration tensor; the unbiased estimate without that assumption gives 
A,  = 1.01. Lam (1986) has estimated A,  = 0.5 from R, series assuming v = 0.6406. 
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Gaunt et a1 (1982) as well as Duarte and Ruskin (1981) have shown that 0 = 1 for 
bond and site trees in 2~ on the basis of exact enumerations; this confirms that both 
site and bond trees belong to the same universality class as site and bond animals. 
Seitz and Klein (1981) have estimated v = 0.615 for trees while the real space RG 
calculation (Family 1980) gives v = 0.6370. Recent Monte Carlo approaches (Carac- 
ciolo and Glaus 1985, Meirovitch 1987) estimate v = 0.640 and 0 = 1.00 for bond trees 
by assuming A I  = 1; these estimates are in accord with the animal values. 

The density distribution P , ( r )  at a point r from the centre of mass of n-clusters 
can be described using an exponent 6 as 

P,(*) - A  exP[a(rlR,)Sl (8) 
for sufficiently large n (Stauffer 1978a). Herrmann (1979) has assessed S = 2.6 for 
animals in 2~ by use of the Monte Carlo data given by Peters er a1 (1979). 

In this paper, we estimate the values of A, 0, v, A, and S in 2~ using the exact 
series data newly obtained for bond trees (i.e. lattice animals without loops and weakly 
embeddable in the lattice) on the square (SQ) and triangular (TRI)  lattices; much 
attention is paid to v, A, and S .  To our knowledge, the estimation of A ,  and S is the 
first attempt for lattice trees although the analysis of the anisotropy of the radius of 
gyration tensor by Family et a1 (1985) suggests that A, is equivalent for animal and tree. 

2. Exact enumerations 

We have carried out exact enumerations of n-bond trees on the TRI and SQ lattices for 
up to n = 11 and 14, respectively, by exploiting the Martin algorithm (Martin 1974, 
Redner 1982). We have added three more terms to both the existing series of N ,  for 
the TRI (Duarte and Ruskin 1981) and SQ (Gaunt et a1 1982) lattices while the R, 
series were new; these series are reproduced in table 1. The series for P,(r)(n 6 11) 
for the TRI lattice were enumerated in the form of N n P , ( q l ,  q2 )  using the oblique 
coordinate system, where r2 = q:+ q1q2+ q: (see Ishinabe 1987). For the SQ lattice 

Table 1. Exact series of N,, and R,, for the SQ and T R I  lattices. 

1 
1 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

2 
6 

22 
87 

364 
1574 
6 986 

31 581 
144 880 
672 390 

3 150 362 
14 877 317 
70 726 936 

338 158 676 

2 
28 

276 
2 320 

17 780 
127 844 
879 036 

5 839 760 
37 772 428 

239 082 260 
1486548912 
9105610904 

55068644440 
329401857232 

3 
15 
89 

576 
3 930 

27 782 
201 414 

1 488 048 
11 156 061 
84 622 074 

648 039 990 

3 
66 

1050 
14 334 

178 578 
2 092 416 

23 454 906 
254 233 146 

2683 896297 
27 735 513 846 

281619667638 
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only the series N,P, , (x) (n  G 14) of the x-component distribution were obtained, owing 
to our computer memory. These P, series are not given here since the tables are too 
lengthy to reproduce, but they are available upon request. 

3. Series analysis 

3.1. Radius of gyration 

We estimate v and A, following a method (Ishinabe 1988, 1989) based on the conven- 
tional technique of series analysis combined with the finite-size scaling idea of Privman 
and Fisher (1983), employing the cancellation of leading correction terms. First we 
evaluate the ratiost 

vn,  k = in  ( P n  + k /  P n  - 1 )/ k (9) 

for k = 1 or 2 ,  where pn  = R:. The ratios ( k  = 1) of adjacent terms are used for the 
TRI lattice while the alternate ratios ( k  = 2) are used for the SQ lattice. After forming 
these ratios, we construct the Neville table (e.g. Gaunt and Guttmann 1974) for linear, 
quadratic and cubic extrapolants 

vg: = [ nv;;')  - ( n  - k r )  vrI;,i]/ kr (10) 

for r = 1-3, with vL$ = I/,&. We determine the first trial value of v by plotting these 
extrapolants against n-l  and extrapolate to n +CO, having in mind the curvature of 
convergence as a whole together with damping oscillations. Then the estimators 

p , ( n  - k)2upn-kn2u  
pn-kn2v-Al  - p , ( n  - k)2"-Al  B n , k ( A l )  = 

are constructed. The curves Bn,k(A1) as a function of A ,  for different n intersect at a 
point close to the correct A ,  if Y is known; approximate values of A ,  and B can be 
estimated for the trial v. We perform the transformation p': = p n / (  1 + B K A l ) ,  using 
the result to eliminate the singular term. Similarly, the improved v is estimated from 
p z  series. Thus we get reliable estimates of v and A ,  by repeating the above procedure 
several times. We can also estimate A ,  and A from the estimators (Privman 1984) 

Figure 1 illustrates the first plots of v$ ( r  = 1 and 2 )  against n-' for the S Q  lattice; 
we get v = 0.640 * 0.008 as a trial value. Using this value, we have A ,  = 0.67 and B = 1.24 
from the intersection of Bn,2(Al) curves for different n. An improved estimate of v is 
obtained by exploiting the transformed series p :  ; some terms in the appropriate Neville 
table of v$ ( r  = 1-3) for p :  are listed in table 2 .  We take v = 0.644*0.004 as our final 
estimate in view of the increase in the last five terms of v$ as n increases, but with 
a tendency to be somewhat bowed downwards, and the upwards trend as a whole with 
a slight odd-even oscillation in those of U:::. We show Bn,2(A,) curves for n = 10-14 
for v = 0.644 in figure 2; the successive average l?n,2 = ;( B n - 1 , 2 +  Bn,2)  is employed in 
place of Bn,2 to lessen the odd-even effect for the SQ lattice, but we omit the bar in 

t We also used the ratios V,,J = f  In(p , , /p , ,_~) / ln[n / (n  - k ) ] ,  but they yield almost the same values as are 
obtained from (9). 
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Table 2. Neville table for the estimation of U from transformed R,, series for the SQ lattice. 

n vu,2 r,,2 v ( 3 )  rr.2 y ( l )  p )  
n , 2  

6 0.669 207 0.635 91 0.632 24 
7 0.664 891 0.635 57 0.636 70 0.610 72 
8 0.661 461 0.638 22 0.640 53 0.643 29 
9 0.659 009 0.638 42 0.641 98 0.644 62 

10 0.657 113 0.639 72 0.641 97 0.642 93 
11 0.655 629 0.640 42 0.643 91 0.645 5 1 
12 0.654 445 0.641 11 0.643 88 0.645 80 

I 1 

A I  
Figure 2. Curves of B,,,2(A1) for the input v = 0.644 
for the SQ lattice. 

A ?  
Figure 3. Curves of At, , , (Al)  for the imput U = 0.648 
for the TRI lattice. 



4424 T Ishinabe 

&. We get A I  = 0.635 and B = 1.318; almost the same value of AI is estimated from 
the corresponding An,2(Al) curves. We take A, = 0.635f0.03 as our final estimate; the 
error limit is determined by considering that of U. Similarly, we estimate U =  

0.648*0.005 for the TRI lattice; some terms in the corresponding Neville table of U;; 
( r  = 1-3) for p z  series are reproduced in table 3. The A , , ( A , )  curves for n = 7-11 for 
U = 0.648 are depicted in figure 3; we get A, = 0.635 f 0.02 and A = 0.1 156. The inter- 
section of such curves for B, , (A, )  gives the same value of A, and B = 1.528. 

3.2. Number of trees 

For N,, series we form 

An,k  = (Nn/Nn-k)l'k (13) 

--n(A,,,k/A;L- 1) (14) 

and 

where A;L ( r  = 1-3) are the rth extrapolants of hn,k defined as in (lo),  and k = 1 (TRI)  

and 2 (sQ). The plots of 13;; against n-' for r = 1 and 2 are shown in figure 4 for the 
SQ lattice; they suggest 6 = 1.01 f 0.015 while we have 6 = 1.01 f 0.02 from the similar 
plots of 0;; for the TRI lattice. Our results are compatible with the other estimates 
for lattice trees (Duarte and Ruskin 1981, Gaunt et a1 1982) and in good agreement 

Table 3. Neville table for the estimation of Y from transformed R,, series for the TRI lattice. 

4 0.666 652 0.637 45 0.634 59 0.633 57 
5 0.660 656 0.636 67 0.635 51 0.636 13 
6 0.657 066 0.639 1 1  0.643 99 0.652 47 
7 0.654 665 0.640 26 0.643 13 0.641 99 
8 0.652 980 0.641 19 0.643 96 0.645 34 
9 0.651 789 0.642 26 0.646 02 0.650 1 5  

10 0.650 920 0.643 09 0.646 41 0.647 33 

0 0.05 0.10 
n-1 

Figure 4. Ratio estimate of 6 from linear ( r  = 1 )  and quadratic ( r  = 2) extrapolants 6:;: 
for the SQ lattice. 



Critical exponents for bond trees 4425 

with the commonly accepted value 8 = 1 for lattice animals in 2 ~ .  The analogous plots 
for A X L  produce A = 5.140i0.008 and A = 8.41 i0 .02  for the SQ and TRI lattices, 
respectively. These values are compared with the corresponding estimates A = 
5.14&0.01 (Gaunt et a1 1982) and A =8.40*0.03 (Duarte and Ruskin 1981). 

If A and 8 are evaluated, we can estimate A1 from a method similar to that for R,  
by forming 

NnnAl+CH-N, -kAk(n-k )Al+e  
A " [ n A i  - ( n  - k ) * i ]  A L , k ( A l )  = 

or 

It is practically difficult, however, to reliably estimate A I  in this case since the confidence 
of the estimate has a strong dependence on error limits of both A and 8. We then evaluate 

instead of (13) assuming 8 = 1, and estimate A,  and B' by exploiting (16) with 8 = 1. 
A reliable value of A is obtained using the transformation NZ = N,/(l + B'n-Al). 

Figure 5 shows BL,2(Al) curves ( n  = 11-14) for the SQ lattice for A = 5.143 obtained 
from (13'); the intersection of the curves yields B'= -0.376 and A, = 1.34rt0.50, where 
the error limit is estimated by considering that of A. The corresponding estimate for 
AL,2(A1) gives A'= 0.527 and the same A , .  The improved value A = 5.142* 0.002 is 
obtained for the SQ lattice from the transformed N :  series. Similarly, we have 
A,  = 1.26 * 0.50, A' = 0.4884, B' = -0.312 and A = 8.412 + 0.004 for the TRI lattice. We 
reproduce some terms in the Neville tables of A t ;  and A X ;  ( r  = 1-3) for NZ series in 
tables 4 and 5 for the SQ and TRI lattices, respectively. 

A n , k  = [ n N , / ( n - k ) N n - k ] l ' k  (13') 

3.3. Density distribution 

In figure 6 we show the cross sections of P , ( r )  in different directions as a function of 
r / R ,  ; they were obtained from our enumeration data for n = 11 for the TRI lattice. 

n.14 
\ 

A1 
Figure 5. Curves of E ; , , * ( A , )  for the inputs A = 5.143 and t9 = 1 for the SQ lattice. 
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Table 4. Neville table for the estimation of A from transformed N,, series for the SQ lattice. 

8 5.143 315 5.145 28 5.105 97 5.922 89 
9 5.142 797 5.148 07 5.129 21 5.317 51 

10 5.143 103 5.142 26 5.137 72 5.158 89 
11 5.143 038 5.144 12 5.137 21 5.143 88 
12 5.143 051 5.142 79 5.143 86 5.15000 
13 5.143 037 5.143 03 5.140 58 5.144 50 
14 5.143 030 5.142 91 5.143 21 5.142 34 

Table 5. Neville table for the estimation of A from transformed N,, series for the TRI lattice. 

n A!,,, A ( ' )  ) / , I  A"?) ),, 1 A ( 3 )  ,?,I 

6 8.408 297 8.405 66 8.41 1 25 8.509 09 
7 8.407 414 8.402 12 8.393 26 8.369 27 
8 8.407 016 8.404 23 8.410 57 8.439 42 
9 8.406 937 8.406 3 1 8.413 56 8.419 55 

10 8.406 945 8.407 01 8.409 85 8.401 17 
11 8.407 016 8.407 73 8.410 94 8.413 87 

r /R, 

Figure 6. Cross sections of P , ! ( r )  ( n  = 11) for the TRI  lattice in different directions: x ( = q , )  
axis (O), 19.1" from the axis ( A )  and 30" from the x axis (0). The full curve represents 
(8) for S = 2.69. 
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These plots suggest that the circular symmetry of P,,(r)  is maintained in this case and 
P , ( r )  can be described by a single exponent S although the plots are somewhat 
dispersed for r /  R, < 1; such dispersion is also noticed in Monte Carlo data for lattice 
animals (Stauffer 1978b). 

Reduced radial moments are defined by 

where the mean values (r’nk) of 2kth power of r are evaluated from 

( r i k >  = r2kPn( r ) / (  n + 1 ) .  
r 

The reduced moments of function (8) can be expressed in terms of gamma functions 
(McKenzie 1973) 

We calculate mi:) for k = 2-6 for the TRI lattice to estimate the limiting values of 
mi:) by plotting the extrapolants m(,ri ( r =  1 and 2) against n-’. An example ( k = 2 )  
of the estimation is depicted in figure 7; we obtain mim) = 1.765 * 0.008, having in mind 
the monotonic trend of the plots. The values of mi:) thus estimated are listed in table 
6 together with those of mi:) for n S 1 1 .  We compare the ml:) values with the table 
of m 2 k  evaluated from (19) for each k for the appropriate S to find a region of S such 
that each value of mi:) ( k  = 2-6) is contained in the corresponding region of m2k. 

Thus we have 

6 = 2.69:::;; (20) 
where the error limit is taken in view of the estimated errors in mi:); our value is 
compatible with the value S = 2.6 for a lattice animal given by Herrmann (1979). The 
m 2 k  values calculated from (19) for 6 = 2.69 are also given in table 6 (in parentheses) 
for the sake of comparison. The full curve in figure 6 represents P , ( r )  which is 
best-fitted to the data of n = 11,  i.e. A = 0.005 92, and a = 0.6309 with S = 2.69. 

For the SQ lattice, we consider the x component quantities 

Mi:) = ( x : k ) / ( x : ) k  

t 
0 0.05 0.10 0. 

n- ’ 
Figure 7. Plots of linear and quadratic extrapolants mi,’: of mt” against n-’ for the TRI 
lattice. 
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Table 6. Values of my[) ( k  = 1-6) and mi?' for the T R I  lattice. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1.000 000 
1.425 620 
1.563 978 
1.630 428 
1.668 653 
1.693 106 
1.709 803 
1.721 775 
1.730 685 
1.737 505 
1.742 845 

1.000 000 
2.343 163 
3.042 198 
3.428 300 
3.664 857 
3.821 168 
3.929 824 
4.008 538 
4.067 444 
4.112 652 
4.148 074 

1.000 000 
4.129 030 
6.699 744 
8.438 464 
9.612 789 

10.431 771 
11.020 040 
1 1.455 069 
11.784 958 
12.040321 
12.241 507 

1 .ooo 000 
7.550 743 

15.927 908 
23.048 61 1 
28.511 521 
32.617 885 
35.710 925 
38.070 877 
39.898 950 
41.335 274 
42.478 851 

1 .ooo 000 
14.128 882 
39.830 034 
67.660 481 
92.396 121 

112.792 427 
129 122 067 
142.1 10 532 
152.470 558 
160.784 904 
167.509 008 

a2 1.765 * 0.008 4.29 * 0.05 13.01 0.5 46.5 * 3.5 197 1 28 
(1.7622) (4.278) (12.99) (46.86) (194.3); 

t The figures in parentheses are the values of m,, calculated from (19) for S = 2.69. 

and 

since we only have the series of x component distribution P,,(x) -exp[a'(x/R,)*] 
(Domb et al 1965). Following the method mentioned above, we get the estimate 
6 = 2.54h0.12, which is somewhat smaller than (20). 

We list the values of Mi:)( n S 14), Mk?), and M2k for 6 = 2.54 in table 7 for k = 2-6. 
The corresponding value of 6 for the TRI lattice is 6 = 2.52 f 0.10. 

Table 7. Values of MY:) ( k  = 1-6) and Mi?' for the SQ lattice. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

M p '  Mk"' M y  j 

2.000 000 4.000 00 8.000 00 
2.387 755 7.530 61 26.527 70 
2.516 068 9.230 00 40.696 60 
2.574 828 9.919 40 47.958 17 
2.607 107 10.322 23 52.443 77 
2.626 568 10.554 30 55.106 06 
2.639 375 10.706 05 56.857 67 
2.648 074 10.805 48 58.001 01 
2.654 219 10.873 73 58.778 63 
2.658 677 10.921 58 59.315 00 
2.661 964 10.955 54 59.688 54 
2.664 423 10.979 89 59.949 83 
2.666 279 10.997 37 60.131 75 
2.667 684 11.009 82 60.256 29 

a2 2.650i 0.008 10.7 kO.1 56.2 1 1.2 
(2.6100) (10.434) (54.96) 

M ' " ]  
I2 

M("1 
10 

16.000 00 32.000 00 
98.157 14 371.533 94 

1020.742 93 198.029 59 
266.465 04 1617.248 74 
313.479 39 2092.887 68 
343.708 20 2432.119 96 
364.299 10 2677.185 71 
378.095 35 2848.923 77 
387.604 36 2970.848 94 
394.206 81 3057.417 59 
398.821 09 3119.032 43 
402.049 36 3162.834 98 
404.293 44 3193.781 61 
405.825 14 3215.31468 

3501 14 2400 * 200 
(355.1) (269817' 

t The figures in parentheses are the values of M,, calculated from (22) for S = 2.54. 
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4. Discussion and conclusion 

Critical parameters estimated for bond trees on the SQ and TRI lattices are listed in 
table 8. The values of v are reconciled with most Monte Carlo results U = 0.64-0.65 
for lattice animals and U = 0.649*0.009 from the real space RG theory (Family 1983), 
while not consistent with the Flory value of 2. Recent Monte Carlo estimations 
(Caracciolo and Glaus 1985, Meirovitch 1987) and the finite-size scaling renormalisa- 
tion method (Derrida and Stauffer 1985) give slightly smaller values v = 0.640 f 0.008 
and U = 0.640 75 * 0.000 15 for bond trees and site animals, respectively; they are almost 
on the limits of the estimated uncertainties in our estimates. 

Table 8. Critical values estimated from ( a )  R,, and (b)  N,, series for the SQ and T R I  lattices. 

( a )  

Lattices V 4 A B 

SQ 0.644 * 0.004 0.635 f 0.03 0.1156 1.318 
TRI 0.648 * 0.005 0.635 * 0.02 0.1021 1.528 

A A ,  A' B' 

SQ 5.142*0.002 1.34i0.5 0.527 -0.376 
TRI  8.412 f 0.004 1.26k0.5 0.488 -0.312 

t 6 = 1 is assumed. 

Our estimation of A,  from R, series yields a smaller value than the commonly 
accepted value A, = 0.87 f 0.06 for lattice animals given by Guttmann (1982) while that 
from N, series yields a significantly larger value. Our estimation of A, is dependent 
on a given value of U or A. The dependence is, however, very weak for R, ; we have 
A, = 0.67 and 0.66 for the SQ and TRI lattices, respectively, if U = 0.640 is adopted. We 
have checked our method using the existing series of N, ( n  S 24) obtained by Redelmeier 
(1981) for a site animal on the SQ lattice. We have A, = 0.83 f0.06, A'=  0.3174 and 
B'= -0.412 assuming 8 = 1 and A = 4.0626*0.0002 (Guttmann 1982); the value of A ,  
is consistent with the accepted value, and A' and B' are compared with Guttmann's 
A = 0.317 and B'= -0.465. We also obtain A,  = 0.78 *0.05, A = 0.1897, B = -0.748 and 
v = 0.641 f 0.002 by applying our method to the R,  series ( n  S 19) of Lam (1986); they 
are reconciled with accepted values for lattice animals. Hence, our results suggest a 
possibility that A ,  is different not only between trees and animals but also between R, 
and N, for lattice trees although it is not very conclusive in the latter case due to large 
error limit of A ,  for N,.  

We have tried another approach to estimate A, for N ,  following Privman (1984). 
Putting t9 = 1 we form 

for the TRI ( k  = 1) and SQ ( k  = 2) lattices, where An,k  is evaluated from (13'). The 
values of A and A,  are estimated simultaneously from the intersection of An,k(A, )  curves 
for different n. The results are A = 8.409 and A, = 1.02 for the TRI lattice while A = 5.144 
and A, = 1.73 for the SQ lattice. The marked discrepancy in A ,  between two lattices 
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suggests the error limit of A 1  is very large also in this unbiased method. It seems that 
these results are not in contradiction with our estimates of A,  in view of the uncertainties 
of estimates. 

In conclusion, we have obtained new series for R, and P , ( r )  for bond trees on the 
TRI and SQ lattices while some new terms are added to the extant data of N,,. Respective 
estimates of leading scaling exponents v, 0 and S from R,,, N,, and P,,(r) series are 
in accord with those for lattice animals to confirm the hypothesis that trees are in the 
same university class as animals. Estimates of the correction-to-scaling exponent A, 
are different from the accepted value for animals. In addition, they suggest that A 1  is 
different between R, and N,, for lattice trees. 
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